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Versions of stochastic Liénard equations perturbed by both additive and multiplicative

white noise are considered. We discuss existence, uniqueness, continuity, boundedness

and moment stability of solutions with the help of several Lyapunov-type functions. The

Lyapunov functions are explicitly found to control uniform moment boundedness and

plays an essential role to guarantee stability (uniform boundedness) of p-th moments by

validation of those Lyapunov functions.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Many authors dealt with systems of ordinary stochastic differential equations, e.g. see Arnold [1,2], Khasminskiǐ [3] and
Mao [4]. For an overview on the theory of stochastic differential equations, see also Freidlin and Wentzell [5], Friedman [6],
Gard [7], Gikhman and Skorochod [8], Karatzas and Shreve [9], Krylov [10], Mao [11], Oksendal [12], Protter [13] or Revuz
and Yor [14]. One of the most commonly met dynamic equations in mechanical and electrical engineering is that of
Liénard-type, also known as Liénard oscillators, which can be used to model vibrations of physically relevant systems. A
detailed study of this general class of equations perturbed by Markovian-type of noise is still missing, although some
discussion can be found in Khasminskiǐ’s book [3] on existence of a stationary solution process in the case of additive noise
(cf. example 2:10 at pp. 92–93, which is due to an idea of M.B. Nevel’son), an asymptotic analysis of singular perturbations
as done by Narita [15–17], and a study of stationary solutions under Markovian switching as carried out by Xi and Zhao
[18]. Nonrandom Liénard equations were extensively studied in the works of Burton [19–23].

The most known representative of Liénard equations is that of Van der Pol equations (i.e. our model (1) with damping
term f ðxÞ ¼ �ðx2 � 1Þ and restoring force gðxÞ ¼ x as mentioned below), which are used to describe the behavior of simple
electronic circuits. Phenomena such as thermal noise forces us to take random Markovian perturbations of Liénard
equations into account. The simplest forms of such perturbations are additive and multiplicative white noise.

The aim of our paper is to investigate existence, uniqueness, continuity, boundedness and stability of strong solutions of
Itô-type stochastic differential equations

€xþ f ðxÞ_xþ gðxÞ ¼ s0x0 þ s1xx1 þ s2 _xx2 þ s3

ffiffiffiffiffiffiffiffiffiffiffi
jf ðxÞj

p
_xx3 (1)
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perturbed by independent white noises xjðtÞ with Gaussian representation

WjðtÞ ¼

Z t

0
xjðsÞds 2Nð0; tÞ; j ¼ 0;1;2;3. (2)

For this purpose, we construct Lyapunov-type functions V and verify its use by showing LVp0 or LVpcV for the
infinitesimal generator L of Eq. (1) with appropriate constant c. The idea of using Lyapunov functions for the analysis of
stochastic equations is due to Khasminskiǐ [3] to a large extent. However, in that book [3] and later works, it has not been
specified how to construct such functions for nonlinear stochastic dynamics. In fact, each class of nonlinear equations
requires its own detailed study to find and verify those functionals controlling the underlying dynamics. We are aiming
with this paper to fill that gap and present a verification of a series of appropriate Lyapunov functions V for the entire class
of Eqs. (1). Moreover, the explicit knowledge of and construction of V can also be used to control the approximation error of
numerical methods applied to Eq. (1). For details, see the axiomatic approach in Schurz [24] and related aspects
[25–28,30,29].

In passing, we note that several other attempts have been followed to treat the subclass of stochastic Van der Pol
equations. For example, among many other results, Imkeller and Schmalfuss [31] proved the existence of global attractors.
Bonzani [32] obtains an analytical approximate solution to a generalized stochastic Van der Pol equation by the use of G.A.
Adomian’s decomposition method. Schenk-Hoppé [33] discusses possible bifurcation scenarios. Moreover, Tel [34] finds an
expansion of the stationary distribution in powers of a bifurcation parameter for such equations.

Eq. (1) is also called stochastic Liénard equation or Liénard oscillator. For its analysis, we transform Eq. (1) into the
equivalent system

_x ¼ y; _y ¼ �f ðxÞy� gðxÞ þ s0x0 þ s1xx1 þ s2yx2 þ s3

ffiffiffiffiffiffiffiffiffiffiffi
jf ðxÞj

p
yx3. (3)

Hence, we may rewrite Eq. (3) in the Itô differential form

dXðtÞ ¼ aðXðtÞÞdt þ
X3

j¼0

bj
ðXðtÞÞdWjðtÞ (4)

for solution process X ¼ ðx; yÞ 2 R2 where

a1ðx; yÞ ¼ y; a2ðx; yÞ ¼ �f ðxÞy� gðxÞ; bj
1ðx; yÞ ¼ 0 ðj ¼ 0;1;2;3Þ, (5)

b0
2ðx; yÞ ¼ s0; b1

2ðx; yÞ ¼ s1x; b2
2ðx; yÞ ¼ s2y; b3

2ðx; yÞ ¼ s3

ffiffiffiffiffiffiffiffiffiffiffi
jf ðxÞj

p
y. (6)

The paper is organized as follows. Section 2 reports on existence and uniqueness of continuous Markovian solutions.
Section 3 discusses uniform moment boundedness on infinite time-intervals and asymptotic moment stability along
Lyapunov-type functions. Section 4 provides some special discussion on the use of a Lyapunov functional modified from
Burton’s book [23] for stability of its moments, in probability and in almost sure sense. We also make use of certain
versions of stochastic LaSalle-type principles to conclude stability and on the structure of related limit sets.

2. Solvability of random Liénard equations

Define

F ¼ sðWjðtÞ : tX0; j ¼ 0;1;2;3Þ (7)

as naturally generated s-algebra generated by underlying Wiener processes Wj. Let C0
locLipðR

1
Þ be the class of all local

Lipschitz continuous functions f : R1
! R1 and V : R2

! R1 defined by

Vðx; yÞ ¼
1

2
y2 þ

1

2
x2 þ

Z x

0
gðzÞdzþ KV þ

1

2
s2

0 (8)

for all x; y 2 R1, where KVX0 is a real constant such that VX0 on R2.

Theorem 1 (Existence and uniqueness). Assume that
(i)
 x0; y0 are independent of naturally generated s-algebra F,

(ii)
 f ; g 2 C0

locLipðR
1
Þ,R R
(iii)
 8x 2 R1 : x
0 gðzÞdzX� KV and limjxj!þ1ðx

2 þ 2 x
0 gðzÞdzÞ ¼ þ1,
(iv)
 E½Vðx0; y0Þ�oþ1 where V is defined by Eq. (8), and
(v)
 9Ke 8x 2 R
1 : 1þ s2

2 þ s
2
3jf ðxÞj � 2f ðxÞpKeoþ1.
Then, there is a unique, continuous, Markovian solution ðx; yÞ of Eq. (3) satisfying
s2
0

2
p sup

0ptpT
E½VðxðtÞ; yðtÞÞ�pE½Vðx0; y0Þ� expðmaxfKe;s2

1 þ 1gTÞ. (9)
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Proof. From standard textbooks on stochastic differential equations, we know about the existence of local unique,
continuous and Markovian solutions up to the first exit time tr from any ball Br ¼ fðx; yÞ 2 R

2 : x2 þ y2pr2g since (i), (iv)
are satisfied and local Lipschitz coefficients are guaranteed by (ii) too. It remains to show that the local solution can be
extended to be a global one by verifying that solutions cannot reach the boundary of R2. First, note that the function V

defined by Eq. (8) is positive-definite and radially unbounded due to assumptions (iii). So it may serve as a Lyapunov
function to prove existence and uniqueness of global solutions. We shall borrow some ideas of Khasminskiǐ [3] (see
Theorem 4.1, pp. 84–85). For this purpose, define stopping time tr ¼ infftX0 : ðxðtÞ; yðtÞÞeBrg. Set trðtÞ ¼ minðt; trÞ for tX0.
Recall the infinitesimal generator of the Markov process related to Eq. (3) is given by the second-order linear partial
differential operator

L ¼ y
q
qx
� ðf ðxÞyþ gðxÞÞ

q
qy
þ

1

2
ðs2

0 þ s
2
1x2 þ s2

2y2 þ s2
3jf ðxÞjy

2Þ
q2

qy2
(10)

mapping from C2 to C0. Recall Dynkin’s formula for stopped Markov processes

E½VððxðtrðtÞÞ; yðtrðtÞÞÞ� ¼ E½Vððxð0Þ; yð0ÞÞÞ� þ E

Z trðtÞ

0
LVððxðtrðsÞÞ; yðtrðsÞÞÞÞds. (11)

Now, calculate LVðx; yÞ. So we arrive at

LVðx; yÞ ¼ yx� f ðxÞy2 þ
1

2
ðs2

0 þ s
2
1x2 þ s2

2y2 þ s2
3jf ðxÞjy

2Þ

p
s2

0

2
þ
s2

1 þ 1

2
x2 þ

1þ s2
2 þ s

2
3jf ðxÞj � 2f ðxÞ

2
y2pmaxfs2

1 þ 1;KegVðx; yÞ (12)

for all x; y 2 R1. Thus, plugging this estimate into Dynkin’s formula Eq. (11) leads to the uniform estimation

E½VððxðtrðtÞÞ; yðtrðtÞÞÞ�pE½Vððxð0Þ; yð0ÞÞÞ� þmaxfs2
1 þ 1;Keg

Z t

0
E½VðxðtrðsÞÞ; yðtrðsÞÞÞ�ds

pðE½Vððxð0Þ; yð0ÞÞÞ�Þ expðmaxfs2
1 þ 1;KegTÞoþ1 (13)

for 0ptpT (while using Gronwall–Bellman inequality). On the other hand, we have

r2Pðf9s : 0psot; ðxðsÞ; yðsÞÞeBrgÞ ¼ r2E½Iftrotg� (14)

p2E½VððxðtrðtÞÞ; yðtrðtÞÞÞÞIftrotg�

p2E½VððxðtrðtÞÞ; yðtrðtÞÞÞÞðIftrotg þ IftrXtgÞ�

¼ 2E½VððxðtrðtÞÞ; yðtrðtÞÞÞ1pnpNÞ�, (15)

where IS denotes the indicator function of subscribed set S. Consequently, for all 0ptpT , conclude that

PðftrotgÞ ¼ Pðf9s : 0psot; ðxðsÞ; yðsÞÞeBrgÞp
ð2E½Vððxð0Þ; yð0ÞÞÞ�Þ expðmaxfs2

1 þ 1;KegTÞ

r2
. (16)

Taking the limit r!þ1 yields that PðftoTgÞ ¼ 0 where t is the first exit time of process fðxðtÞ; yðtÞÞ : tX0g from the open
set R2. Hence, the local solution can never explode at finite terminal times T and the unique continuation to a global
solution must exist. It remains to check Eq. (9). Apply again Dynkin’s formula Eq. (11) (while dropping the exit time tr

formalism since we know that trðtÞ ¼ t (a.s.)) to get to

E½VððxðtÞ; yðtÞÞÞ�pðE½Vððxð0Þ; yð0ÞÞÞ�Þ expðmaxfs2
1 þ 1;KegtÞ. (17)

Now, take the supremum at t. Note that Vðx; yÞXs2
0=2 for all x; y 2 R1. Hence, Eq. (9) is obvious. Thus, we have confirmed

the conclusion of Theorem 1. &

Remark 2. One may derive more precise uniform bounds on the moments of solutions ðx; yÞ of Eq. (3). This heavily depends
on the choice of Lyapunov functional V and the specific parameter choice. Such a study is left to the reader.

Remark 3. Under the assumptions of Theorem 1 with gðxÞX0 we also have uniform boundedness of second moments (and
hence first ones too) of displacement x and velocity y ¼ _x of random Liénard oscillator defined by Eq. (1), i.e.

sup
0ptpT

E½xðtÞ�2oþ1; sup
0ptpT

E½yðtÞ�2oþ1. (18)

As a byproduct, when gðxÞX0, we gain that

�1o� KVpE

Z x0

0
gðzÞdz

� �
p sup

0ptpT
E

Z xðtÞ

0
gðzÞdz

" #
oþ1. (19)

Note that trivially x2 þ y2p2Vðx; yÞ due to condition (iii) in Theorem 1.
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Remark 4. One may also derive estimates of moments along certain Lyapunov functionals from below while exploiting
similar comparison techniques as in proof above. Such an analysis is omitted here.

3. Moment boundedness and stability analysis

For x; y 2 R1, define Vs : R
2
! R1 by

Vsðx; yÞ ¼
1

2
y2 þ

Z x

0
gðzÞdz. (20)

Theorem 5 (Uniform boundedness of 1st moments). Assume that
(i)
 x0; y0 are independent of naturally generated s-algebra F,

(ii)
 f ; g 2 C0

locLipðR
1
Þ,R
(iii)
 8x 2 R1 : x
0 gðzÞdzX0,
(iv)
 E½Vsðx0; y0Þ�oþ1 where Vs is defined by Eq. (20),

(v)
 s0 ¼ 0 ¼ s1 and 8x 2 R1 : s2

2 þ s
2
3jf ðxÞj � 2f ðxÞp0.
Then, for Eq. (3), the following moments are uniformly bounded with respect to time t:

0p sup
0ptoþ1

E½yðtÞ�2pE½y0�
2oþ1, (21)

0p sup
0ptoþ1

E

Z xðtÞ

0
gðzÞdz

" #
pE

Z x0

0
gðzÞdz

� �
oþ1. (22)

Proof. Recall the form of the infinitesimal generator L as given by Eq. (10). Calculate LVs and arrive at

LVsðx; yÞ ¼ ðs2
2 þ s

2
3jf ðxÞj � 2f ðxÞÞ

y2

2
p0 (23)

for all x; y 2 R1. Dynkin’s formula Eq. (11) with trðtÞ ¼ t yields that

0pE½VsððxðtÞ; yðtÞÞÞ�pE½Vsððxð0Þ; yð0ÞÞÞ� ¼ E½Vsðx0; y0Þ�. (24)

Therefore, in view of Vsðx; yÞXy2=2 and Vsðx; yÞX
R x

0 gðzÞdz for all ðx; yÞ 2 R2, we establish the estimates (21) and (22) very
easily. &

Remark 6. Note that the Gronwall–Bellman Lemma can be applied to negative integrand kernels as well if the differential
inequalities hold uniformly for all initial times and terminal times. This was shown indirectly in Ref. [4] and directly
in Ref. [25].

Define Vp : R
2
! R1 by

Vpðx; yÞ ¼ y2 þ 2

Z x

0
gðzÞdz

� �p=2

(25)

for x; y 2 R1, where pX2 is a real constant.

Theorem 7 (Uniform boundedness of pth moments). Assume that
(i)
 x0; y0 are independent of naturally generated s-algebra F,

(ii)
 f ; g 2 C0

locLipðR
1
Þ,R
(iii)
 8x 2 R1 : x
0 gðzÞdzX0,
(iv)
 E½Vpðx0; y0Þ�oþ1 where Vp is defined by Eq. (25),

(v)
 s0 ¼ 0 and 8x 2 R1 :

ðs2
2ðp� 1Þ þ ðp� 1Þs2

3jf ðxÞj � 2f ðxÞÞ
y2

2
þ
ðp� 1Þs2

1

2
x2pKp y2 þ 2

Z x

0
gðzÞdz

� �
.

Then, for system Eq. (3), the moments of Vp are bounded on ½0; T�, i.e.

sup
0ptpT

E½VpðxðtÞ; yðtÞÞ�pE½Vpðx0; y0Þ� expðp½Kp�þTÞoþ1, (26)

where ½��þ represents the positive part of the inscribed expression.
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Proof. Recall L given by (10) and calculate

LVpðx; yÞ ¼ p½Vpðx; yÞ�
ðp�2Þ=p �f ðxÞy2 þ

s2
1x2 þ s2

2y2 þ s2
3jf ðxÞjy

2

2
1þ
ðp� 2Þy2

x2 þ y2

 ! !

ppKpVpðx; yÞ (27)

for all x; y 2 R1. Therefore, Dynkin’s formula Eq. (11) with trðtÞ ¼ t and Gronwall–Bellman inequality provide us the
conclusion of Theorem 7. &

Define Vg : R
2
! R1 by

Vgðx; yÞ ¼
1

2
y2 þ aygðxÞ þ

Z x

0
gðzÞdzþ KV (28)

for x; y 2 R1, where a and KV are real constants such that Vg is positive.

Theorem 8 (Instability and stability). Assume that
(i)
 x0; y0 are independent of naturally generated s-algebra F,

(ii)
 f ; g 2 C0

locLipðR
1
Þ and g is differentiable on R1 (m-a.e.),
(iii)
 a and KV in (28) are such that there is a constant aX0 satisfying

8x; y 2 R1 : aðx2 þ y2ÞpVgðx; yÞ, (29)
(iv)
 E½Vgðx0; y0Þ�oþ1 where Vg is defined by Eq. (28),

(v)
 s0 ¼ 0 ¼ s1 and 9Ka;Kb 2 R

1 (constants)
8x 2 R1 : Kap2ag0ðxÞ þ s2
2 þ s

2
3jf ðxÞj � 2f ðxÞpKb. (30)

Then, for Eq. (3), the condition KaX0 and a40 implies asymptotic instability of moments along Vg , i.e. for adapted initial values

satisfying E½x2
0 þ y2

0�40, we have

lim inf
t!þ1

E½VgðxðtÞ; yðtÞÞ�XE½Vgðx0; y0Þ�XaE½x2
0 þ y2

0�40, (31)

and Kbp0 implies stability of moments along Vg , i.e.

sup
0ptoþ1

E½VgðxðtÞ; yðtÞÞ� ¼ E½Vgðx0; y0Þ�oþ1. (32)

If Kbo0 then we have even almost sure asymptotic stability of y-component and

8tX0 : aE½y2ðtÞ�pE½Vgðx0; y0Þ� exp
Kb
2a t

� �
. (33)

Moreover, the condition Kbo0 and a40 guarantees asymptotic mean square stability of the y-component of system Eq. (3).

Proof. Recall L given by Eq. (10). Calculate and estimate

Ka
y2

2
pLVgðx; yÞ ¼ ð2ag0ðxÞ þ s2

2 þ s
2
3jf ðxÞj � 2f ðxÞÞ

y2

2
pKb

y2

2
(34)

for all x; y 2 R1. Dynkin’s formula Eq. (11) with trðtÞ ¼ t and Gronwall–Bellman inequality yield that, if KaX0, we have

lim inf
t!þ1

E½VgððxðtÞ; yðtÞÞÞ�XE½Vgðx0; y0Þ�XaE½x2
0 þ y2

0�. (35)

Therefore, we can establish asymptotic instability Eq. (31) while requiring that a40 and KaX0. On the other hand, we
arrive at

LVgðx; yÞ ¼ ð2ag0ðxÞ þ s2
2 þ s

2
3jf ðxÞj � 2f ðxÞÞ

y2

2
pKb

y2

2
(36)

for all x; y 2 R1. A straightforward application of Dynkin’s formula Eq. (11) with trðtÞ ¼ t while using Eq. (36) leads to the
estimate Eq. (32) of uniform boundedness of moments along Vg whenever Kbp0. More precisely, we obtain the estimates

0paE½x2ðtÞ þ y2ðtÞ�pE½VgðxðtÞ; yðtÞÞ�pE½Vgðx0; y0Þ�, (37)

0paE½y2ðtÞ�pE½Vgðx0; y0Þ� exp
Kb
2a t

� �
(38)

for tX0. This estimate also confirms exponential mean square stability of y with upper (moment Lyapunov) exponent not
greater than Kb=2 whenever Kbo0 and a40. It remains to apply Theorem 6.1 from Schurz [26] (p. 513) to conclude almost
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sure stability of y-component. (Similarly, one could argue with stochastic Lasalle Theorem 2.1 from Mao [35] when f

uniformly bounded and g of linear growth.) Thus, the assertion of Theorem 8 is proven. &

Example 1 (Randomly forced damped pendulum). Consider the damped pendulum with locally Gaussian randomly forced
linear resistance

€xþ 1
2þ c
� �

_xþ sinðxÞ ¼ s_xxt , (39)

where c40;s 2 R1 and x Gaussian white noise. Hence, we have

gðxÞ ¼ sinðxÞ; f ðxÞ ¼ 1
2þ c;s0 ¼ s1 ¼ s3 ¼ 0; s2 ¼ s. (40)

Take a 2 R1, KV ¼ a2 and consider

Vgðx; yÞ ¼
y2

2
þ ay sinðxÞ þ a2 þ 1� cosðxÞ ¼

ðyþ a sinðxÞÞ2

2
�

a2

2
sin2
ðxÞ þ a2 þ 1� cosðxÞ

 

¼
y2

4
þ

y

2
þ a sinðxÞ

� �2
þ a2ð1� sin2

ðxÞÞ þ 1� cosðxÞ

!
. (41)

Obviously Vgðx; yÞXy2=4X0 for all a; x; y 2 R1. Thus, we can apply Theorem 8 with

a ¼ 0; Ka ¼ �2jaj � 1� s2 � 2c; Kb ¼ 2jaj � 1þ s2 � 2c, (42)

and its condition for uniform boundedness of moments along Vg reads as

8x 2 R1 : Kap2a cosðxÞ þ s2 � 1� 2cpKbp0 (43)

which is trivially fulfilled whenever s2p2c and �0:5pap0:5. Moreover, Theorem 8 says that the limit

a2

2
p lim

t!þ1
E½VgðxðtÞ; yðtÞÞ�pE½Vgðx0; y0Þ�oþ1 (44)

exists, the limits limt!þ1E½y
2ðtÞ� ¼ 0 and (with probability one) limt!þ1y2ðtÞ ¼ 0 if s2o2c and �0:5pap0:5 (since this

guarantees that Kbo0 can be chosen). Actually, it suffices to require Kbo0 for the validity of this statement on the limits.
Furthermore, let us apply also Theorem 7. For this purpose, consider

Vpðx; yÞ ¼ ðy
2 þ 2ð1� cosðxÞÞÞp=2 (45)

as defined by Eq. (25). Let p ¼ 2ð1þ �Þ with real constant �40. Suppose that E½ðy2
0 þ 2ð1� cosðx0ÞÞÞ

p=2�oþ1. Then one
easily can also conclude the uniform boundedness of

E½ð½yðtÞ�2 þ 2ð1� cosðxðtÞÞÞÞ1þ��pE½ðy2
0 þ 2ð1� cosðx0ÞÞÞ

1þ��. (46)

Moreover, the assumptions of stochastic LaSalle-type Theorem 2.1 from Mao [35] (p. 177) are fulfilled. Therefore, we may
conclude that the finite limit

lim
t!þ1

ð½yðtÞ�2 þ 2ð1� cosðxðtÞÞÞÞ1þ� (47)

exists (a.s.) and

lim
t!þ1

y2ðtÞ ¼ 0 ða:s:Þ (48)

whenever �ð1þ 2cÞ þ ð1þ 2�Þs2o0. This guarantees almost sure stability of its y-component whenever

�ð1þ 2cÞ þ s2o0 (49)

by choosing �40 to be sufficiently small in above computations and replacing Vpðx; yÞ by Vðx; yÞ ¼ ð1þ y2 þ 2ð1�
cosðxÞÞÞp=2. In this case we can also conclude uniform boundedness of 1st moments of x-component by integrating y with
respect to t.

4. A modified stochastic Liénard oscillator

The comments of Burton [23, p. 228] give rise to a modification of our previously studied Liénard oscillator and related
Lyapunov functional. We shall see that this modification is done such that the Lyapunov functional and its Liénard system
are nearly ‘‘optimally tuned’’ to reach stability on infinite time-intervals. Consider

€xþ f ðxÞ_xþ gðxÞ ¼ s0x0 þ s1xx1 þ s2 _xx2 þ s3

ffiffiffiffiffiffiffiffiffiffiffi
jf ðxÞj

p
_xx3 þ s4hðxÞx4 (50)



ARTICLE IN PRESS

H. Schurz / Journal of Sound and Vibration 325 (2009) 938–949944
perturbed by multiplicative independent white noise xjðtÞ (j ¼ 0; . . . ;4) and local Lipschitz-continuous noise intensity
function h. Define Vp;c : R

2
! R1 by

Vp;cðx; yÞ:¼ KV þ cy2 þ yþ

Z x

0
f ðzÞdz

� �2

þ 2ðc þ 1Þ

Z x

0
gðzÞdz

 !p=2

(51)

for x; y 2 R1, where KV ; cX0; pX2 are real constants. Set

mðp; cÞ:¼2ðp� 2Þmaxfc;1g þ c þ 1. (52)

Theorem 9 (Uniform boundedness of pth moments). Assume that
(i)
 x0; y0 are independent of naturally generated s-algebra F,

(ii)
 f ; g;h 2 C0

locLipðR
1
Þ, R
(iii)
 9 constants KV ; cX0 and 8x 2 R1 : KV þ 2ðc þ 1Þ x
0 gðzÞdzX0,
(iv)
 E½Vp;cðx0; y0Þ�oþ1 where Vp;c is defined by Eq. (51),
(v)
 9K1
p;c;K

2
p;c 2 R

1 (constants) 8x 2 R1 :
� 2cf ðxÞ þmðp; cÞðs2
2 þ s

2
3jf ðxÞjÞp2cK1

p;c and

mðp; cÞðs2
0 þ s

2
1x2 þ s2

4ðhðxÞÞ
2Þ � 2gðxÞ

Z x

0
f ðzÞdzp2K2

p;c KV þ 2ðc þ 1Þ

Z x

0
gðzÞdz

� �
. (53)

Then, for Eq. (50), the moments of Vp;c are bounded on ½0; T�, i.e.

sup
0ptpT

E½Vp;cðxðtÞ; yðtÞÞ�pE½Vp;cðx0; y0Þ� expðp½maxfK1
p;c ;K

2
p;cg�þTÞoþ1, (54)

where ½��þ represents the positive part of the inscribed expression.

Proof. Recall the form of infinitesimal generator L given by Eq. (10). For abbreviation, define

dðx; yÞ:¼s2
0 þ s

2
1x2 þ s2

2y2 þ s2
3jf ðxÞjy

2 þ s2
4ðhðxÞÞ

2 (55)

as diffusion part of L. Use condition (v) to calculate

LVp;cðx; yÞ ¼ y
p

2
ðVp;cðx; yÞÞ

ðp�2Þ=p 2 yþ

Z x

0
f ðzÞdz

� �
f ðxÞ þ 2ðc þ 1ÞgðxÞ

� �

� ðf ðxÞyþ gðxÞÞ
p

2
ðVp;cðx; yÞÞ

ðp�2Þ=p 2cyþ 2 yþ

Z x

0
f ðzÞdz

� �� �

þ
1

2
dðx; yÞ

p

2

p

2
� 1

� �
ðVp;cðx; yÞÞ

ðp�4Þ=p4 ðc þ 1Þyþ

Z x

0
f ðzÞdz

� �2
" #

þ
1

2
dðx; yÞ

p

2
ðVp;cðx; yÞÞ

ðp�2Þ=p2ðc þ 1Þ
h i

¼ � pðVp;cðx; yÞÞ
ðp�2Þ=p gðxÞ

Z x

0
f ðzÞdzþ cf ðxÞy2

� �

þ p
dðx; yÞ

2
ðp� 2ÞðVp;cðx; yÞÞ

ðp�4Þ=p ðc þ 1Þyþ

Z x

0
f ðzÞdz

� �2
" #

þ p
dðx; yÞ

2
½ðc þ 1ÞðVp;cðx; yÞÞ

ðp�2Þ=p�

ppðVp;cðx; yÞÞ
ðp�2Þ=p½�2cf ðxÞ þmðp; cÞðs2

2 þ s
2
3jf ðxÞjÞ�

y2

2

þ pðVp;cðx; yÞÞ
ðp�2Þ=p mðp; cÞðs2

0 þ s
2
1x2 þ s2

4ðhðxÞÞ
2Þ � 2gðxÞ

Z x

0
f ðzÞdz

� �

ppðVp;cðx; yÞÞ
ðp�2Þ=p K1

p;ccy2 þ K2
p;c KV þ 2ðc þ 1Þ

Z x

0
gðzÞdz

� �� �

pp maxfK1
p;c ;K

2
p;c;0gVp;cðx; yÞ (56)

for all x; y 2 R1. Therefore, Dynkin’s formula Eq. (11) with trðtÞ ¼ t and Gronwall–Bellman inequality provide the conclusion
of Theorem 9. &

Remark 10. Theorem 9 is particularly efficient for stability analysis when the resistance function f ðxÞ is nonnegative. If f ðxÞ

possesses negative values then the only efficient application can be seen with the choice of constants c ¼ 0, s2 ¼ 0 and
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s3 ¼ 0 due to the form of conditions (v). While looking at the conditions (v), we also observe that the assumption

8x 2 R1 : gðxÞ

Z x

0
f ðzÞdzX0 (57)

is essentially needed to have stable moment dynamics along the functions Vp;c (to compensate the destabilizing part of
terms connected to s0, s1 and s4). This exhibits a kind of ‘‘matching condition’’ of interaction between resistance f and
restoring parts g to achieve boundedness and stability. If all Ki

p;cp0 we have uniform boundedness of first moments along
Vp;c on infinite time-intervals ½0;þ1Þ thanks to Theorem 9. More precisely, we have the following conclusions.

Theorem 11 (On moment limit behavior). Assume that
(i)
 x0; y0 are independent of naturally generated s-algebra F,

(ii)
 f ; g;h 2 C0

locLipðR
1
Þ, R
(iii)
 9 constants KV ; cX0 and 8x 2 R1 : KV þ 2ðc þ 1Þ x
0 gðzÞdzX0,
(iv)
 E½Vp;cðx0; y0Þ�oþ1 where Vp;c is defined by Eq. (51),

(v)
 8x 2 R1 :
uðxÞ:¼� 2cf ðxÞ þmðp; cÞðs2
2 þ s

2
3jf ðxÞjÞp0 (58)

and (59)

vðxÞ:¼mðp; cÞðs2
0 þ s

2
1x2 þ s2

4ðhðxÞÞ
2Þ � 2gðxÞ

Z x

0
f ðzÞdzp0. (60)

Then, for Eq. (50), the moments of Vp;c are uniformly bounded in time t, i.e.

sup
0ptpþ1

E½Vp;cðxðtÞ; yðtÞÞ� ¼ E½Vp;cðx0; y0Þ�oþ1, (61)

and t 2 R1
þ/zðtÞ:¼E½Vp;cðxðtÞ; yðtÞÞ� is a decreasing function in t with existing finite limits limt!þ1zðtÞ. In addition we have the

convergence of improper integrals satisfying

�
2

p
E½Vp:cðx0; y0Þ�p

Z þ1
0

E ðVp;cðxðtÞ; yðtÞÞÞ
ðp�2Þ=pðuðxðtÞÞðyðtÞÞ2 þ 2vðxðtÞÞÞ

h i
dtp0

with vanishing integrands as t!þ1. Moreover, in probability, we find the limit

lim
t!þ1

½Vp;cðxðtÞ; yðtÞÞ�
ðp�2Þ=pðuðxðtÞÞðyðtÞÞ2 þ 2vðxðtÞÞÞ ¼ 0. (62)

Proof. Recall mðp; cÞ defined by Eq. (52) and from previous proof of Theorem 9 that

LVp;cðx; yÞppðVp;cðx; yÞÞ
ðp�2Þ=p½�2cf ðxÞ þmðp; cÞðs2

2 þ s
2
3jf ðxÞjÞ�

y2

2

þ
p

2
ðVp;cðx; yÞÞ

ðp�2Þ=p mðp; cÞðs2
0 þ s

2
1x2 þ s2

4ðhðxÞÞ
2Þ � 2gðxÞ

Z x

0
f ðzÞdz

� �

¼
p

2
ðVp;cðx; yÞÞ

ðp�2Þ=puðxÞy2 þ pðVp;cðx; yÞÞ
ðp�2Þ=pvðxÞ (63)

for all x; y 2 R1, where uðxÞ and vðxÞ are defined as in Eqs. (58) and (60), respectively. Note that

8x; y 2 R1 : LVp;cðx; yÞp0 (64)

under the condition of Eqs. (58) and (59). Apply Dynkin’s formula Eq. (11) with trðtÞ ¼ t in order to arrive at

E½Vp;cðxðtÞ; yðtÞÞ� ¼ E½Vp;cðxðsÞ; yðsÞÞ� þ E

Z t

s
LVp;cðxðrÞ; yðrÞÞdr

� �
pE½Vp;cðxðsÞ; yðsÞÞ� (65)

for all tXsX0. Hence the function t 2 R1
þ/zðtÞ:¼E½Vp;cðxðtÞ; yðtÞÞ� is decreasing and bounded by E½Vp;cðx0; y0Þ�. The

monotone convergence theorem from calculus implies that the finite limit limt!þ1zðtÞX0 must exist. Thus, Eq. (61) is
confirmed under Eqs. (58) and (59). Now, put the negative parts of the right-hand side of Eq. (65) to the left-hand side of
obtained moment inequality Eq. (65) and replace the positive term of E½Vp;cðxðtÞ; yðtÞÞ� by the trivial estimate 0 from below.
This yields that

0p�
p

2

Z t

0
E½½Vp;cðxðsÞ; yðsÞÞ�

ðp�2Þ=p½uðxðsÞÞðyðsÞÞ2 þ 2vðxðsÞÞ�dspE½Vp;cðxð0Þ; yð0ÞÞ� ¼ E½Vp;cðx0; y0Þ�oþ1. (66)

Notice that this chain of inequalities is uniformly bounded in t by the finite constant E½Vp;cðx0; y0Þ�. Moreover, these
integrals are nondecreasing in t thanks to the set of conditions (v). So, by bounded convergence theorem from calculus, we
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know about the existence and finiteness of improper integralsZ þ1
0

E½�½Vp;cðxðsÞ; yðsÞÞ�
ðp�2Þ=pðuðxðsÞÞðyðsÞÞ2 þ 2vðxðsÞÞÞ�dsX0. (67)

Note that the integrand

f pðsÞ ¼ E½�½Vp;cðxðsÞ; yðsÞÞ�
ðp�2Þ=pðuðxðsÞÞðyðsÞÞ2 þ 2vðxðsÞÞÞ� (68)

is nonnegative and Lipschitz-continuous (hence uniformly continuous). Therefore, an application of standard convergence
theory of improper integrals over nonnegative, Lipschitz-continuous functions f p leads to the fact that those integrands f p

(moment expressions) have to converge to 0 as their argument s tends toþ1 (with respect to the Lebesgue measure on the
real line). Furthermore, from probability theory (e.g. see [36]), we know that this property implies convergence in
probability of involved random variables as claimed in the conclusion of Theorem 11. &

Theorem 12 (On pathwise limit behavior). Let Vp;c be as in (51). Assume that conditions (i)–(v) from Theorem 11 are satisfied

for a constant p42, and

sup
x2R1
jf ðxÞj þ sup

x2R1

gðxÞ

1þ jxj
oþ1. (69)

Then, the limit limt!þ1Vp;cðxðtÞ; yðtÞÞ exists almost surely, and the limits

lim
t!þ1

½Vp;cðxðtÞ; yðtÞÞ�
ðp�2Þ=puðxðtÞÞðyðtÞÞ2 ¼ 0, (70)

lim
t!þ1

½Vp;cðxðtÞ; yðtÞÞ�
ðp�2Þ=pvðxðtÞÞ ¼ 0 (71)

hold almost surely, where u and v are defined as in Theorem 11.

Proof. We only need to apply the version of stochastic LaSalle-type Theorem 2.1 from Mao [35] since all its assumptions
are satisfied, in particular, the uniform boundedness of p-th moments of solutions ðxðtÞ; yðtÞÞ. One may use the nonnegative
wedge function

wðx; yÞ ¼ �
p

2
½Vp;cðx; yÞ�

ðp�2Þ=puðxÞy2 � p½Vp;cðx; yÞ�
ðp�2Þ=pvðxÞX0, (72)

where uðxÞ and vðxÞ are defined as in Eqs. (58) and (59), respectively. Then, the conclusion on almost sure limits along both
Vp;c and w follows immediately. &

Example 2 (Random pendulum with oscillating resistance). Consider the pendulum with locally Gaussian randomly
perturbed nonlinear restoring force

€xþ a cosðxÞ_xþ b sinðxÞ ¼ s sinðxÞxt , (73)

where a; b;s 2 R1 and x Gaussian white noise. Hence, we have

gðxÞ ¼ b sinðxÞ; f ðxÞ ¼ a cosðxÞ; hðxÞ ¼ sinðxÞ (74)

and parameters

s0 ¼ s1 ¼ s2 ¼ s3 ¼ 0; s4 ¼ s. (75)

Suppose that the ‘‘matching condition of sign-stability’’

ab40 (76)

is met. Take p42, c ¼ 0, mðp; cÞ ¼ 2p� 3. Consider

Vp;0ðx; yÞ ¼ ðKV þ ðyþ a sinðxÞÞ2 þ 2bð1� cosðxÞÞÞp=2, (77)

where

KV ¼
0 if bX0;

�4b if bo0:

(
(78)

Then, applying Theorem 11, the condition for stability of moments along Vp;0 essentially reduces to

vðxÞ ¼ ½ð2p� 3Þs2 � 2ab�ðsinðxÞÞ2p0, (79)

which is trivially fulfilled whenever s2p2ab=ð2p� 3Þ, i.e. when the product of resistance parameter a and restoring
parameter b is large enough or, on the other hand, the noise intensity s is sufficiently small. Note that uðxÞ ¼ 0 in Eq. (58)
vanishes for all x here (since c ¼ 0 and s2 ¼ s3 ¼ 0). Suppose that

E½ðKV þ ðy0 þ a sinðx0ÞÞ
2 þ 2bð1� cosðx0ÞÞÞ

p=2�oþ1. (80)
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Then, by Theorem 11, one can easily conclude the uniform boundedness of all moments

E½ðKV þ ½yðtÞ þ a sinðxðtÞÞ�2 þ 2bð1� cosðxðtÞÞÞÞp=2�pE½ðKV þ ðy0 þ a sinðx0ÞÞ
2 þ 2bð1� cosðx0ÞÞÞ

p=2�. (81)

Furthermore, if additionally s2o2ab=ð2p� 3Þ holds then we may apply Theorem 12 too. In this case, we may conclude that
the finite limit

lim
t!þ1

ð½yðtÞ þ a sinðxðtÞÞ�2 þ bð1� cosðxðtÞÞÞÞ (82)

exists (a.s.) and

lim
t!þ1

V ðp�2Þ=pðxðtÞ; yðtÞÞ sinðxðtÞÞ ¼ 0 ða:s:Þ. (83)

The latter limit can be only established if

lim
t!þ1

sinðxðtÞÞ ¼ 0 ða:s:Þ (84)

or

lim
t!þ1

ðKV þ ½yðtÞ þ a sinðxðtÞÞ�2 þ bð1� cosðxðtÞÞÞÞ ¼ 0 (85)

hold almost surely. Consequently, the x-limit limt!þ1xðtÞ must be contained in the limit set

fkp : k 2 Zg (86)

(Z is the set of all integers). Thus, we may conclude that

lim
t!þ1

½yðtÞ�ðp�2Þ=p sinðxðtÞÞ ¼ 0 ða:s:Þ (87)

by evaluating the assertions of Theorem 12. Moreover, we know that the limit limt!þ1E½yðtÞ�
2 ¼ 0 from uniform

boundedness of moments along Vp;0. That is this random oscillator with sufficiently small noise intensity s of unbounded
noise terms will eventually rest in its rest point ð0;0Þ with probability one as time advances to þ infinity, even though we
may observe the periodic possibility of negative resistance coefficients f ðxÞ ¼ a cosðxÞ (recall that solutions of such
oscillators are Hölder-continuous almost surely, see Mao [11]).

Example 3 (A modified Van der Pol oscillator). Consider the modified Van der Pol oscillator with locally Gaussian randomly
perturbed nonlinear restoring force

€xþ �ðx2 � 1Þ_xþo2x2nðx3 � 3xÞ ¼ shðxÞxt , (88)

where �40;o;s 2 R1, n 2 N and x Gaussian white noise. Let us briefly discuss the role of noise intensity hðxÞ to guarantee
moment-stable dynamics of these oscillators. We may apply Theorem 11. For this purpose, set

f ðxÞ ¼ �ðx2 � 1Þ; gðxÞ ¼ o2x2nðx3 � 3xÞ. (89)

Note that Z x

0
f ðzÞdz ¼

�
3
ðx3 � 3xÞ, (90)

hence, for all x 2 R1, we have

gðxÞ

Z x

0
f ðzÞdz ¼

o2�
3

x2nðx3 � 3xÞ2X0. (91)

This observation of nonnegativity allows us to formulate a sufficient criterion for the uniform boundedness of moments
along

Vp;0ðx; yÞ ¼ KV þ yþ
�
3
ðx3 � 3xÞ

� �2
þ 2o2 x2nþ4

2nþ 4
�

3x2nþ2

2nþ 2

 ! !p=2

(92)

and the existence of certain limits in probability by the help of Theorem 11, whereas Theorem 12 is not applicable here due
to the obvious violation of condition (69). We have to choose c ¼ 0 and s2 ¼ s3 ¼ 0 since f may take on negative values.
Therefore, the auxiliary function uðxÞ ¼ 0 defined by (58) vanishes for all x 2 R1. However, we may gain the conclusion from
Theorem 11 that either limt!þ1Vp;0ðxðtÞ; yðtÞÞ ¼ 0 or limt!þ1vðxðtÞÞ ¼ 0, provided that E½Vp;0ðxð0Þ; yð0ÞÞ�oþ1 and

8x 2 R1 : vðxÞ ¼ ð2p� 3Þs2ðhðxÞÞ2 �
2�o2

3
x2nðx3 � 3xÞ2p0. (93)

Thus, for nonrandom initial values ðx0; y0Þ, vðxÞp0 for all x 2 R1 clearly represents a sufficient condition on the noise
intensity hðxÞ and all involved parameters s, pX2, �40 and o in order to guarantee moment stability and convergence of
solutions ðxðtÞ; yðtÞÞ of modified Van der Pol system Eq. (88) in probability on infinite time-intervals ½0;þ1Þ. For example, if
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p ¼ 2 then we need to require that

jshðxÞjpjoj
ffiffiffiffiffiffi
6�
p

3
jxjnjx3 � 3xj. (94)

Moreover, we may choose the constant KV ¼ KV ðn;oÞ40 in the Lyapunov-type functional Vp;0 sufficiently large such that
Vp;0 has no real root and is strictly positive. Therefore, in this case, we even conclude that

lim
t!þ1

vðxðtÞÞ ¼ 0 (95)

in probability and limt!þ1E½vðxðtÞÞ� ¼ 0, where vðxÞ is as defined by Eq. (60). In particular, the case hðxÞ ¼ xnþ1ðx2 � 3Þwith
3s2o2�o2 leads to the conclusion that the x-limit must be contained in the set f0;þ

ffiffiffi
3
p

;�
ffiffiffi
3
p
g with probability one and

y-limit is identical to 0 as time t tends to þ1 (recall that xðtÞ ¼ xð0Þ þ
R t

0 yðsÞds and use theory of improper integration).

5. Conclusion

The idea of using Lyapunov functions for qualitative analysis of dynamical systems is known a long time. However, the
explicit construction remains to be a challenging task in stochastic settings. In this respect, we overcome this dilemma by
constructing and verifying the use of certain Lyapunov functions for the quite general class of stochastic Liénard oscillators
in this paper. Indeed, we have found a new type of matching condition (57) between damping terms and restoring force to
ensure meaningful models with stable scenarios under stochastic perturbations. This condition guarantees us boundedness
and stability of its solutions.

Further research could treat systems of coupled stochastic Liénard oscillators by appropriate Lyapunov functions or
functionals as they occur in the space-discretization of stochastic partial differential equations, in stochastic systems with
memory or other types of noises such as locally non-Gaussian ones.
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